Donald Brenner

Department Head and Kobe Steel Distinguished Professor

  • 919-515-1338
  • Engineering Building I (EB1) 3028D
  • Visit My Website

Donald Brenner was a staff scientist at the U.S. Naval Research Laboratory before joining the NCSU faculty in 1994.

Brenner’s interests include atomistic simulations of the structure, growth and properties of thin films; simulated engineering of nanometer-scale structures and devices; solid-state chemical dynamics.

Dr. Brenner’s group’s research uses atomic-scale computer simulations to develop a fundamental understanding of many-body chemical dynamics in condensed phases, with an emphasis on technologically-important materials and processes. Specific areas of interest currently include molecule-surface collisions and thin film vapor deposition; energy transfer, friction, tribochemistry and their influence on the wear of sliding solid interfaces; shock-induced chemistry in solids; nanometer-scale structure and mechanical properties of grain boundaries in covalent materials; mechanisms of cross-linking and hardening of polymers via ion bombardment; and the development of new strategies for engineering nanometer-scale structures and devices. Much of the engineering of advanced materials and electronic devices in the next century will likely require building structures on a microscopic if not an atom-by-atom level. By exploring this realm, their simulations are helping to lay the foundation for the next generation of materials engineering.

Education

Ph.D. 1987

Chemistry

Pennsylvania State University

B.S. 1982

Chemistry

State University of New York

Publications

Evidence for Jahn-Teller compression in the (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxide: A DFT study
Rak, Z., Maria, J. P., & Brenner, D. W. (2018), Materials Letters, 217, 300–303. https://doi.org/10.1016/j.matlet.2018.01.111
First-principles investigation of diffusion and defect properties of Fe and Ni in Cr2O3
Rak, Z., & Brenner, D. W. (2018), Journal of Applied Physics, 123(15).
High-entropy high-hardness metal carbides discovered by entropy descriptors
Sarker, P., Harrington, T., Toher, C., Oses, C., Samiee, M., Maria, J.-P., … Curtarolo, S. (2018), NATURE COMMUNICATIONS, 9. https://doi.org/10.1038/s41467-018-07160-7
Ab initio investigation of the surface properties of austenitic Fe-Ni-Cr alloys in aqueous environments
Rak, Z., & Brenner, D. W. (2017), Applied Surface Science, 402, 108–113. https://doi.org/10.1016/j.apsusc.2017.01.048
How predictable is plastic damage at the atomic scale?
Li, D., Bucholz, E. W., Peterson, G., Reich, B. J., Russ, J. C., & Brenner, D. W. (2017), Applied Physics Letters, 110(9).
Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy-stabilized oxide: An EXAFS study
Rost, C. M., Rak, Z., Brenner, D. W., & Maria, J. P. (2017), Journal of the American Ceramic Society, 100(6), 2732–2738. https://doi.org/10.1111/jace.14756
Spatial prediction of crystalline defects observed in molecular dynamic simulations of plastic damage
Peterson, G. C. L., Li, D., Reich, B. J., & Brenner, D. (2017), Journal of Applied Statistics, 44(10), 1761–1784. https://doi.org/10.1080/02664763.2016.1221915
Statistical and image analysis for characterizing simulated atomic-scale damage in crystals
Li, D., Reich, B. J., & Brenner, D. W. (2017), Computational Materials Science, 135, 119–126. https://doi.org/10.1016/j.commatsci.2017.03.054
Using spatial cross-correlation image analysis to characterize the influence of strain rate on plastic damage in molecular dynamics simulations
Li, D., Reich, B. J., & Brenner, D. W. (2017), Modelling and Simulation in Materials Science and Engineering, 25(7).
Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations
Rak, Z., Rost, C. M., Lim, M., Sarker, P., Toher, C., Curtarolo, S., … Brenner, D. W. (2016), Journal of Applied Physics, 120(9).
Theoretical assessment of bonaccordite formation in pressurized water reactors
Rak, Z., O’Brien, C. J., Shin, D., Andersson, A. D., Stanek, C. R., & Brenner, D. W. (2016), Journal of Nuclear Materials, 474, 62–64. https://doi.org/10.1016/j.jnucmat.2016.02.016
Understanding the atomic-level chemistry and structure of oxide deposits on fuel rods in light water nuclear reactors using first principles methods
Rak, Z., O’Brien, C. J., Brenner, D. W., Andersson, D. A., & Stanek, C. R. (2016), JOM: the Journal of the Minerals, Metals & Materials Society, 68(11), 2912–2921. https://doi.org/10.1007/s11837-016-2102-z
Defect formation in aqueous environment: Theoretical assessment of boron incorporation in nickel ferrite under conditions of an operating pressurized-water nuclear reactor (PWR)
Rak, Z., Bucholz, E. W., & Brenner, D. W. (2015), Journal of Nuclear Materials, 461, 350–356. https://doi.org/10.1016/j.jnucmat.2015.03.038
Interplay of electronic structure and unusual development in crystal structure of YbAuIn and Yb3AuGe2In3
Rak, Z., & Brenner, D. W. (2015), Philosophical Magazine, 95(20), 2167–2174. https://doi.org/10.1080/14786435.2015.1052859
New method for extracting diffusion-controlled kinetics from differential scanning calorimetry: Application to energetic nanostructures
Lu, S. J., Mily, E. J., Irving, D. L., Maria, J. P., & Brenner, D. W. (2015), Journal of Physical Chemistry. C, 119(25), 14411–14418.
Theory and modelling of diamond fracture from an atomic perspective
Brenner, D. W., & Shenderova, O. A. (2015), Philosophical Transactions. Mathematical, Physical, and Engineering Sciences., 373(2038).
Tribological properties of nanodiamonds in aqueous suspensions: effect of the surface charge
Liu, Z. J., Leininger, D., Koolivand, A., Smirnov, A. I., Shenderova, O., Brenner, D. W., & Krim, J. (2015), RSC Advances, 5(96), 78933–78940. https://doi.org/10.1039/c5ra14151f
Tribological properties of polyalphaolefin oil modified with nanocarbon additives
Nunn, N., Mahbooba, Z., Ivanov, M. G., Ivanov, D. M., Brenner, D. W., & Shenderova, O. (2015), Diamond and Related Materials, 54, 97–102. https://doi.org/10.1016/j.diamond.2014.09.003
A particle assembly/constrained expansion (PACE) model for the formation and structure of porous metal oxide deposits on nuclear fuel rods in pressurized light water reactors
Brenner, D. W., Lu, S., O’Brien, C. J., Bucholz, E. W., & Rak, Z. (2015), Journal of Nuclear Materials, 457, 209–212. https://doi.org/10.1016/j.jnucmat.2014.11.061
Calculated stability and structure of nickel ferrite crystal surfaces in hydrothermal environments
O’Brien, C. J., Rak, Z., & Brenner, D. W. (2014), Journal of Physical Chemistry. C, 118(10), 5414–5423. https://doi.org/10.1021/jp5002308
First principles calculations predict stable 50 nm nickel ferrite particles in PWR coolant
O’Brien, C. J., Rak, Z., Bucholz, E. W., & Brenner, D. W. (2014), Journal of Nuclear Materials, 454(1-3), 77–80. https://doi.org/10.1016/j.jnucmat.2014.07.049
First-principles investigation of boron defects in nickel ferrite spinel
Rak, Z., O’Brien, C. J., & Brenner, D. W. (2014), Journal of Nuclear Materials, 452(1-3), 446–452. https://doi.org/10.1016/j.jnucmat.2014.05.031
Challenges to marrying atomic and continuum modeling of materials
Brenner, D. W. (2013), Current Opinion in Solid State and Materials Science, 17(6), 257–262. https://doi.org/10.1016/j.cossms.2013.07.005
Free energies of (Co, Fe, Ni, Zn)Fe2O4 spinels and oxides in water at high temperatures and pressure from density functional theory: results for stoichiometric NiO and NiFe2O4 surfaces
O’Brien, C. J., Rak, Z., & Brenner, D. W. (2013), Journal of Physics. Condensed Matter, 25(44).
Electrostatically mediated adsorption by nanodiamond and nanocarbon particles
Gibson, N. M., Luo, T. J. M., Shenderova, O., Koscheev, A. P., & Brenner, D. W. (2012), Journal of Nanoparticle Research, 14(3). https://doi.org/10.1007/s11051-011-0700-9
Three decades of many-body potentials in materials research
Sinnott, S. B., & Brenner, D. W. (2012), MRS Bulletin, 37(5), 469–473. https://doi.org/10.1557/mrs.2012.88
An angular-dependent embedded atom method (A-EAM) interatomic potential to model thermodynamic and mechanical behavior of Al/Si composite materials
Dongare, A. M., LaMattina, B., Irving, D. L., Rajendran, A. M., Zikry, M. A., & Brenner, D. W. (2012), Modelling and Simulation in Materials Science and Engineering, 20(3).
Deformation mechanisms of an Omega precipitate in a high-strength aluminum alloy subjected to high strain rates
Elkhodary, K., Lee, W., Sun, L. P., Brenner, D. W., & Zikry, M. A. (2011), Journal of Materials Research, 26(4), 487–497. https://doi.org/10.1557/jmr.2010.29
Detonation initiation from spontaneous hotspots formed during cook-off observed in molecular dynamics simulations
Hu, Y. H., Brenner, D. W., & Shi, Y. F. (2011), Journal of Physical Chemistry. C, 115(5), 2416–2422. https://doi.org/10.1021/jp109583g
Dynamic failure behavior of nanocrystalline Cu at atomic scales
Dongare, A. M., Rajendran, A. M., LaMattina, B., Zikry, M. A., & Brenner, D. W. (2011), Computers Materials & Continua, 24(1), 43–60.
First-principles-based mesoscale modeling of the solute-induced stabilization of < 1 0 0 > tilt grain boundaries in an Al-Pb alloy
Purohit, Y., Sun, L., Shenderova, O., Scattergood, R. O., & Brenner, D. W. (2011). First-principles-based mesoscale modeling of the solute-induced stabilization of < 1 0 0 > tilt grain boundaries in an Al-Pb alloy. Acta Materialia, 59(18), 7022–7028. https://doi.org/10.1016/j.actamat.2011.07.056,
Immobilization of mycotoxins on modified nanodiamond substrates
Gibson, N. M., Luo, T. J. M., Brenner, D. W., & Shenderova, O. (2011), Biointerphases, 6(4), 210–217. https://doi.org/10.1116/1.3672489
Vibrational properties and specific heat of ultrananocrystalline diamond: Molecular dynamics simulations
Adiga, S. P., Adiga, V. P., Carpick, R. W., & Brenner, D. W. (2011), Journal of Physical Chemistry. C, 115(44), 21691–21699. https://doi.org/10.1021/jp207424m
Atomic and multi-scale modeling of non-equilibrium dynamics at metal-metal contacts
Crill, J. W., Ji, X., Irving, D. L., Brenner, D. W., & Padgett, C. W. (2010), Modelling and Simulation in Materials Science and Engineering, 18(3).
Atomic scale studies of spall behavior in nanocrystalline Cu
Dongare, A. M., Rajendran, A. M., LaMattina, B., Zikry, M. A., & Brenner, D. W. (2010), Journal of Applied Physics, 108(11).
Atomic-scale study of plastic-yield criterion in nanocrystalline Cu at high strain rates
Dongare, A. M., Rajendran, A. M., Lamattina, B., Brenner, D. W., & Zikry, M. A. (2010), Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 41A(2), 523–531. https://doi.org/10.1007/s11661-009-0113-x
Computational study of the impurity induced reduction of grain boundary energies in nano- and bi-crystalline Al-Pb alloys
Purohit, Y., Sun, L., Irving, D. L., Scattergood, R. O., & Brenner, D. W. (2010), Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing, 527(7-8), 1769–1775. https://doi.org/10.1016/j.msea.2009.11.034
Deformation of precipitate platelets in high strength aluminum alloys under high strain-rate compression
Elkhodary, K., Lee, W., Cheeseman, B., Sun, L. P., Brenner, D. W., & Zikry, M. A. (2010), (pp. 47–52).
Fluorescent dye adsorption on nanocarbon substrates through electrostatic interactions
Gibson, N. M., Luo, T. J. M., Shenderova, O., Choi, Y. J., Fitzgerald, Z., & Brenner, D. W. (2010), (Vol. 19, pp. 234–237).
Molecular basis for neurofilament heavy chain side arm structure modulation by phosphorylation
Adiga, S. P., & Brenner, D. W. (2010), Journal of Physical Chemistry. C, 114(12), 5410–5416. https://doi.org/10.1021/jp905671u
Tension-compression asymmetry in nanocrystalline Cu: High strain rate vs. quasi-static deformation
Dongare, A. M., Rajendran, A. M., LaMattina, B., Zikry, M. A., & Brenner, D. W. (2010), Computational Materials Science, 49(2), 260–265. https://doi.org/10.1016/j.commatsci.2010.05.004
Atomic scale simulations of ductile failure micromechanisms in nanocrystalline Cu at high strain rates
Dongare, A. M., Rajendran, A. M., LaMattina, B., Zikry, M. A., & Brenner, D. W. (2009), Physical Review. B, Condensed Matter and Materials Physics, 80(10). https://doi.org/10.1103/physrevb.80.104108
Atomistic studies of void-growth based yield criteria in single crystal Cu at high strain rates
Dongare, A. M., Rajendran, A. M., LaMattina, B., Zikry, M. A., & Brenner, D. W. (2009), AIP Conference Proceedings, 1195, 769–772.
Colloidal stability of modified nanodiamond particles
Gibson, N., Shenderova, O., Luo, T. J. M., Moseenkov, S., Bondar, V., Puzyr, A., … Brenner, D. W. (2009), Diamond and Related Materials, 18(4), 620–626. https://doi.org/10.1016/j.diamond.2008.10.049
Computational study of nanometer-scale self-propulsion enabled by asymmetric chemical catalysis
Shi, Y. F., Huang, L. P., & Brenner, D. W. (2009), Journal of Chemical Physics, 131(1).
Coupled molecular dynamics/continuum simulations of Joule heating and melting of isolated copper-aluminum asperity contacts
Irving, D. L., Padgett, C. W., & Brenner, D. W. (2009), Modelling and Simulation in Materials Science and Engineering, 17(1).
First-principles investigation of the structure and synergistic chemical bonding of Ag and Mg at the Al vertical bar Omega interface in a Al-Cu-Mg-Ag alloy
Sun, L. P., Irving, D. L., Zikry, M. A., & Brenner, D. W. (2009), Acta Materialia, 57(12), 3522–3528. https://doi.org/10.1016/j.actamat.2009.04.006
Integrated experimental, atomistic, and microstructurally based finite element investigation of the dynamic compressive behavior of 2139 aluminum
Elkhodary, K., Sun, L. P., Irving, D. L., Brenner, D. W., Ravichandran, G., & Zikry, M. A. (2009), Journal of Applied Mechanics: Transactions of the ASME, 76(5).
Multiscale modeling of metal-metal contact dynamics under high electromagnetic stress: Timescales and mechanisms for joule melting of Al-Cu asperities
Irving, D. L., Padgett, C. W., Guo, Y., Mintmire, J. W., & Brenner, D. W. (2009), (Vol. 45, pp. 331–335).
Atomistic modeling of the segregation of lead impurities to a grain boundary in an aluminum bicrystalline solid
Purohit, Y., Jang, S., Irving, D. L., Padgett, C. W., Scattergood, R. O., & Brenner, D. W. (2008), (Vol. 493, pp. 97–100).
Influence of Pb segregation on the deformation of nanocrystalline Al: Insights from molecular simulations
Jang, S., Purohit, Y., Irving, D. L., Padgett, C., Brenner, D., & Scattergood, R. O. (2008), Acta Materialia, 56(17), 4750–4761. https://doi.org/10.1016/j.actamat.2008.05.024
Jetting and detonation initiation in shock induced collapse of nanometer-scale voids
Shi, Y. F., & Brenner, D. W. (2008), Journal of Physical Chemistry. C, 112(16), 6263–6270. https://doi.org/10.1021/jp7119735
MEMS Lubrication: An atomistic perspective of a bound+ mobile lubricant'
Irving, D. L., & Brenner, D. W. (2008). MEMS Lubrication: An atomistic perspective of a bound+ mobile lubricant’. Materials Research Society Symposium Proceedings, 1052, 29–34,
Molecular dynamics simulations of deformation in nanocrystalline Al-Pb alloys
Jang, S., Purohit, Y., Irving, D., Padgett, C., Brenner, D., & Scattergood, R. O. (2008), (Vol. 493, pp. 53–57).
Molecular simulation of the influence of interface faceting on the shock sensitivity of a model plastic bonded explosive
Shi, Y. F., & Brenner, D. W. (2008), Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces & Biophysical, 112(47), 14898–14904. https://doi.org/10.1021/jp805690w
Prediction of Energies of <100> Tilt Boundaries in Al-Pb Alloy
Purohit, Y., Irving, D. L., Scattergood, R. O., & Brenner, D. W. (2008), Materials Research Society Symposium Proceedings, 1056E, 1056–HH01–105610.
Strengthening mechanisms in nanocrystalline alloys
Scattergood, R. O., Koch, C. C., Murty, K. L., & Brenner, D. (2008), (Vol. 493, pp. 3–11).
The role of creep in the time-dependent resistance of Ohmic gold contacts in radio frequency microelectromechanical system devices
Rezvanian, O., Brown, C., Zikry, M. A., Kingon, A. I., Krim, J., Irving, D. L., & Brenner, D. W. (2008), Journal of Applied Physics, 104(2).
Carbon nanostructures: Morphologies and properties
Hu, Y. H., Shenderova, O. A., & Brenner, D. W. (2007), Journal of Computational and Theoretical Nanoscience, 4(2), 199–221. https://doi.org/10.1166/jctn.2007.2307
Hierarchical modeling of nanoindentation and microstructural evolution of face-centered cubic gold aggregates
Ma, J. B., Zikry, M. A., Ashamwi, W. M., & Brenner, D. W. (2007), Journal of Materials Research, 22(3), 627–643. https://doi.org/10.1557/JMR.2007.0076
Multiscale analysis of liquid lubrication trends from industrial machines to micro-electrical-mechanical systems
Brenner, D. W., Irving, D. L., Kingon, A. I., & Krim, J. (2007), Langmuir, 23(18), 9253–9257. https://doi.org/10.1021/la701280k
Simulated thermal decomposition and detonation of nitrogen cubane by molecular dynamics
Shi, Y. F., & Brenner, D. W. (2007), Journal of Chemical Physics, 127(13).
Toward designing smart nanovalves: Modeling of flow control through nanopores via the helix-coil transition of grafted polypeptide chains
Adiga, S. P., & Brenner, D. W. (2007), Macromolecules, 40(4), 1342–1348. https://doi.org/10.1021/ma0617522
The adsorption of aflatoxin B1 by detonation-synthesis nanodiamonds
Puzyr, A. P., Purtov, K. V., Shenderova, O. A., Luo, M., Brenner, D. W., & Bondar, V. S. (2007), Doklady. Biochemistry and Biophysics, 417(1), 299–301. https://doi.org/10.1134/S1607672907060026
Ab initio study of the role of entropy in the kinetics of acetylene production in filament-assisted diamond growth environments
Li, Y. X., Brenner, D. W., Dong, X., & Sun, C. C. (2006), Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment & General Theory, 110(1), 132–140. https://doi.org/10.1021/jp054914p
Carbon nanostructures for advanced composites
Hu, Y. H., Shenderova, O. A., Hu, Z., Padgett, C. W., & Brenner, D. W. (2006), Reports on Progress in Physics, 69(6), 1847–1895. https://doi.org/10.1088/0034-4885/69/6/R05
Diffusion on a self-assembled monolayer: Molecular modeling of a bound plus mobile lubricant
Irving, D. L., & Brenner, D. W. (2006), Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces & Biophysical, 110(31), 15426–15431. https://doi.org/10.1021/jp0609840
Influence of trace precursors on mass transport and growth rate during sublimation deposition of AlN crystal
Li, Y. X., & Brenner, D. W. (2006), Journal of Applied Physics, 100(8).
STM, QCM, and the windshield wiper effect: A joint theoretical-experimental study of adsorbate mobility and lubrication at high sliding rates
Abdelmaksoud, M., Lee, S. M., Padgett, C. W., Irving, D. L., Brenner, D. W., & Krim, J. (2006), Langmuir, 22(23), 9606–9609. https://doi.org/10.1021/la061797w
Thermal conductivity of diamond nanorods: Molecular simulation and scaling relations
Padgett, C. W., Shenderova, O., & Brenner, D. W. (2006), Nano Letters, 6(8), 1827–1831. https://doi.org/10.1021/nl060588t
Ad hoc continuum-atomistic thermostat for modeling heat flow in molecular dynamics simulations
Schall, J. D., Padgett, C. W., & Brenner, D. W. (2005), Molecular Simulation, 31(4), 283–288. https://doi.org/10.1080/08927020512331336898
Diamond nanorods
Shenderova, O. A., Padgett, C. W., Hu, Z., & Brenner, D. W. (2005), Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures, 23(6), 2457–2464. https://doi.org/10.1116/1.2122907
Self-consistent tight binding model adapted for hydrocarbon systems
Areshkin, D. A., Shenderova, O. A., Schall, J. D., & Brenner, D. W. (2005), Molecular Simulation, 31(8), 585–595. https://doi.org/10.1080/08927020500044988
A continuum-atomistic method for incorporating Joule heating into classical molecular dynamics simulations
Padgett, C. W., & Brenner, D. W. (2005), Molecular Simulation, 31(11), 749–757. https://doi.org/10.1080/08927020500262614
Atomistic simulation of the influence of pre-existing stress on the interpretation of nanoindentation data
Schall, J. D., & Brenner, D. W. (2004), Journal of Materials Research, 19(11), 3172–3180. https://doi.org/10.1557/JMR.2004.0410
Electron emission properties of detonation nanodiamonds
Zhirnov, V. V., Shenderova, O. A., Jaeger, D. L., Tyler, T., Areshkin, D. A., Brenner, D. W., & Hren, J. J. (2004), Physics of the Solid State, 46(4), 657–661. https://doi.org/10.1134/1.1711444
Electronic properties of diamond clusters: self-consistent tight binding simulation
Areshkin, D. A., Shenderova, O. A., Adiga, S. P., & Brenner, D. W. (2004), Diamond and Related Materials, 13(10), 1826–1833. https://doi.org/10.1016/j.diamond.2004.04.012
First principles prediction of the gas-phase precursors for AlN sublimation growth
Li, Y. X., & Brenner, D. W. (2004), Physical Review Letters, 92(7). https://doi.org/10.1103/physrevlett.92.075503
Influence of chemisorption on the thermal conductivity of single-wall carbon nanotubes
Padgett, C. W., & Brenner, D. W. (2004), Nano Letters, 4(6), 1051–1053. https://doi.org/10.1021/nl049645d
Model for the influence of boron impurities on the morphology of AIN grown by physical vapor transport
Brenner, D. W., Schlesser, R., Sitar, Z., Dalmau, R., Collazo, R., & Li, Y. (2004), Surface Science, 560(03-Jan), L202–206. https://doi.org/10.1016/j.susc.2004.05.003
A self-consistent tight binding model for hydrocarbon systems: application to quantum transport simulation
Areshkin, D. A., Shenderova, O. A., Schall, J. D., Adiga, S. P., & Brenner, D. W. (2004), Journal of Physics. Condensed Matter, 16(39), 6851–6866. https://doi.org/10.1088/0953-8984/16/39/018
The atomic computer simulation of triple junctions of special tilt boundaries in nickel
Nazarov, A. A., Shenderova, O. A., & Brenner, D. W. (2004), Physics of Metals and Metallography, 98(4), 339–343.
Bonding and stability of hybrid diamond/nanotube structures
Shenderova, O. A., Areshkin, D., & Brenner, D. W. (2003), Molecular Simulation, 29(4), 259–268. https://doi.org/10.1080/0892702021000049691
Convergence acceleration scheme for self-consistent orthogonal- basis-set electronic structure methods
Areshkin, D. A., Shenderova, O. A., Schall, J. D., & Brenner, D. W. (2003), Molecular Simulation, 29(4), 269–286. https://doi.org/10.1080/0892702031000092197
Diffusion-accomodated rigid-body translations along grain boundaries in nanostructured materials
Bachurin, D. V., Nazarov, A. A., Shenderova, O. A., & Brenner, D. W. (2003), Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing, 359(02-Jan), 247–252. https://doi.org/10.1016/s0921-5093(03)00354-x
On the origin and energy of triple junction defects due to the finite length of grain boundaries
Nazarov, A. A., Bachurin, D. V., Shenderova, O. A., & Brenner, D. W. (2003), Interface Science, 11(4), 417–424. https://doi.org/10.1023/A:1026143927269
Would diamond nanorods be stronger than fullerene nanotubes?
Shenderova, O., Brenner, D., & Ruoff, R. S. (2003), Nano Letters, 3(6), 805–809. https://doi.org/10.1021/nl025949t
The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation
Frankland, S. J. V., Harik, V. M., Odegard, G. M., Brenner, D. W., & Gates, T. S. (2003), Composites Science and Technology, 63(11), 1655–1661. https://doi.org/10.1016/S0266-3538(03)00059-9
Atomic modeling of carbon-based nanostructures as a tool for developing new materials and technologies
Brenner, D. W., Shenderova, O. A., Areshkin, D. A., Schall, J. D., & Frankland, S. J. V. (2002), Computer Modeling in Engineering & Sciences : CMES, 3(5), 643–673.
Carbon nanostructures
Shenderova, O. A., Zhirnov, V. V., & Brenner, D. W. (2002), Critical Reviews in Solid State and Materials Sciences, 27(3-4), 227–356. https://doi.org/10.1080/10408430208500497
Mechanical and electrical properties of nanotubes
Bernholc, J., Brenner, D., Nardelli, M. B., Meunier, V., & Roland, C. (2002), Annual Review of Materials Research, 32(2002), 347–375. https://doi.org/10.1146/annurev.matsci.32.112601.134925
Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces
Frankland, S. J. V., Caglar, A., Brenner, D. W., & Griebel, M. (2002, March),
Virtual molecular design of an environment-responsive nanoporous system
Adiga, S. P., & Brenner, D. W. (2002), Nano Letters, 2(6), 567–572. https://doi.org/10.1021/nl025527j
A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons
Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., & Sinnott, S. B. (2002), Journal of Physics. Condensed Matter, 14(4), 783–802. https://doi.org/10.1088/0953-8984/14/4/312
Hydrogen Raman shifts in carbon nanotubes from molecular dynamics simulation
Frankland, S. J. V., & Brenner, D. W. (2001), Chemical Physics Letters, 334(1-3), 18–23. https://doi.org/10.1016/s0009-2614(00)01454-8
Predicted structure and electronic properties of individual carbon nanocones and nanostructures assembled from nanocones
Shenderova, O. A., Lawson, B. L., Areshkin, D., & Brenner, D. W. (2001), Nanotechnology, 12(3), 191–197. https://doi.org/10.1088/0957-4484/12/3/302
Atomistic modeling of the fracture of polycrystalline diamond
Shenderova, O. A., Brenner, D. W., Omeltchenko, A., Su, X., & Yang, L. H. (2000), Physical Review. B, Condensed Matter and Materials Physics, 61(6), 3877–3888. https://doi.org/10.1103/physrevb.61.3877
Elastic models of symmetrical < 001 > and < 011 > tilt grain boundaries in diamond
Nazarov, A. A., Shenderova, O. A., & Brenner, D. W. (2000). Elastic models of symmetrical < 001 > and < 011 > tilt grain boundaries in diamond. Physical Review. B, Condensed Matter and Materials Physics, 61(2), 928–936. https://doi.org/10.1103/physrevb.61.928,
First principles prediction of gas-phase composition and substrate temperature for diamond film growth
Li, Y. X., Brenner, D. W., Dong, X. L., & Sun, C. C. (2000), Molecular Simulation, 25(1-2), 41–51. https://doi.org/10.1080/08927020008044111
Molecular dynamics simulations of carbon nanotube rolling and sliding on graphite
Schall, J. D., & Brenner, D. W. (2000), Molecular Simulation, 25(1-2), 73–79. https://doi.org/10.1080/08927020008044113
Nanoindentation as a probe of nanoscale residual stresses: Atomistic simulation results
Shenderova, O., Mewkill, J., & Brenner, D. W. (2000), Molecular Simulation, 25(1/2), 81. https://doi.org/10.1080/08927020008044114
Novel simulation tools for materials engineering education
Tragler, A., Srinivasan, L., Shenderova, O., McClauren, M., & Brenner, D. W. (2000), Molecular Simulation, 25(1-2), 121–130. https://doi.org/10.1080/08927020008044116
On the disclination-structural unit model of grain boundaries
Nazarov, A. A., Shenderova, O. A., & Brenner, D. W. (2000), Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing, 281(1-2), 148–155. https://doi.org/10.1016/s0921-5093(99)00727-3
Properties of polycrystalline diamond: Multiscale modeling approach
Shenderova, O. A., Brenner, D. W., Omeltchenko, A., Su, X., Yang, L. H., & Nazarov, A. (2000), Molecular Simulation, 24(1-3), 197–207. https://doi.org/10.1080/08927020008024196
The art and science of an analytic potential
Brenner, D. W. (2000), Physica Status Solidi. B, Basic Solid State Physics, 217(1), 23–40. https://doi.org/10.1002/(sici)1521-3951(200001)217:1<23::aid-pssb23>3.0.co;2-n
Atomistic simulations of structures and mechanical properties of < 011 > tilt grain boundaries and their triple junctions in diamond
Shenderova, O. A., & Brenner, D. W. (1999). Atomistic simulations of structures and mechanical properties of < 011 > tilt grain boundaries and their triple junctions in diamond. Physical Review. B, Condensed Matter and Materials Physics, 60(10), 7053–7061. https://doi.org/10.1103/physrevb.60.7053,
Atomistic simulations of structures and mechanical properties of polycrystalline diamond: Symmetrical < 001 > tilt grain boundaries
Shenderova, O. A., Brenner, D. W., & Yang, L. H. (1999). Atomistic simulations of structures and mechanical properties of polycrystalline diamond: Symmetrical < 001 > tilt grain boundaries. Physical Review. B, Condensed Matter and Materials Physics, 60(10), 7043–7052. https://doi.org/10.1103/physrevb.60.7043,
Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations (vol 36, pg 1, 1998)
Sinnott, S. B., Shenderova, O. A., White, C. T., & Brenner, D. W. (1999), Carbon, 37(2), 347.
Predictions of enhanced chemical reactivity at regions of local conformational strain on carbon nanotubes: Kinky chemistry
Srivastava, D., Brenner, D. W., Schall, J. D., Ausman, K. D., Yu, M. F., & Ruoff, R. S. (1999), Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces & Biophysical, 103(21), 4330–4337. https://doi.org/10.1021/jp990882s
Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations
Sinnott, S. B., Shenderova, O. A., White, C. T., & Brenner, D. W. (1998), Carbon, 36(1-2), 1–9. https://doi.org/10.1016/s0008-6223(97)00144-9
Multiscale modeling approach for calculating grain-boundary energies from first principles
Shenderova, O. A., Brenner, D. W., Nazarov, A. A., Romanov, A. E., & Yang, L. H. (1998), Physical Review. B, Condensed Matter and Materials Physics, 57(6), R3181–3184. https://doi.org/10.1103/physrevb.57.r3181
Virtual design and analysis of nanometer-scale sensor and device components
Brenner, D. W., Schall, J. D., Mewkill, J. P., Shenderova, O. A., & Sinnott, S. B. (1998), Journal of the British Interplanetary Society, 51(1998), 137–144.
Atomistic simulations of the nanometer-scale indentation of amorphous-carbon thin films
Sinnott, S. B., Colton, R. J., White, C. T., Shenderova, O. A., Brenner, D. W., & Harrison, J. A. (1997), Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 15(3 pt.1), 936–940. https://doi.org/10.1116/1.580782

View all publications via NC State Libraries

View publications on Google Scholar