Elizabeth Loboa

Dean, University of Missouri

  • 919-513-4015
  • Engineering Building III (EB3) 4208
  • Visit My Website

Dr. Loboa is Dean of the College of Engineering and a Professor of Bioengineering at the University of Missouri, Columbia, and an Adjunct Professor in the Department of Materials Science and Engineering at NCSU.   Research in her laboratory focuses on two areas:  1) empirical and computational approaches to quantitatively determine and deliver biomimetic mechanical, electrical, and material stimuli to human stem cells for functional tissue engineering of musculoskeletal tissues; and, 2) nanofibrous “smart bandages” as controlled release systems for wound healing and tissue engineering applications requiring antimicrobial, antibacterial, and/or anti-inflammatory treatment. Her research has been funded by the Nonwovens Cooperative Research Center (NC based industry consortium), North Carolina Biotechnology Center, National Science Foundation, and the National Institutes of Health.  She is a recipient of the Ralph E. Powe Junior Faculty Award (2005), Sigma Xi Faculty Research Award (2009), UK-US Stem Cell Collaboration Development Award (2009), Stanford University Distinguished Alumni Scholar Award (2010), the NCSU Chancellor’s Innovation Award (2011), and the NCSU Faculty Scholar Award (2012).

Education

Ph.D. 2002

Mechanical Engineering

Stanford University

M.S.E. 1997

Biomechanical Engineering

Stanford University

B.S. 1995

Mechanical Engineering

University of California, Davis

Research Description

Dr. Loboa's research interests include Regenerative Medicine, Functional Tissue Engineering, Wound Healing, and Mechanobiology of Human Stem Cells.

Publications

Creation and evaluation of new porcine model for investigation of treatments of surgical site infection
Mohiti-Asli, M., Risselada, M., Jacob, M., Pourdeyhimi, B., & Loboa, E. G. (2017), Tissue Engineering. Part C, Methods, 23(11), 795–803. https://doi.org/10.1089/ten.tec.2017.0024
Effects of 3D-bioplotted polycaprolactone scaffold geometry on human adipose-derived stem cell viability and proliferation
Mehendale, S. V., Mellor, L. F., Taylor, M. A., Loboa, E. G., & Shirwaiker, R. A. (2017), Rapid Prototyping Journal, 23(3), 534–542.
Electrical cell-substrate impedance spectroscopy can monitor age-grouped human adipose stem cell variability during osteogenic differentiation
Nordberg, R. C., Zhang, J. L., Griffith, E. H., Frank, M. W., Starly, B., & Loboa, E. G. (2017), Stem Cells Translational Medicine, 6(2), 502–511. https://doi.org/10.5966/sctm.2015-0404
Ibuprofen loaded pla nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo
Mohiti-Asli, M., Saha, S., Murphy, S. V., Gracz, H., Pourdeyhimi, B., Atala, A., & Loboa, E. G. (2017), Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 105(2), 327–339. https://doi.org/10.1002/jbm.b.33520
Cell signaling in tenocytes: Response to load and ligands in health and disease
Wall, M. E., Dyment, N. A., Bodle, J., Volmer, J., Loboa, E., Cederlund, A., … Banes, A. J. (2016), Advances in Experimental Medicine and Biology, 920, 79–95.
Concise review: Primary cilia: Control centers for stem cell lineage specification and potential targets for cell-based therapies
Bodle, J. C., & Loboa, E. G. (2016), Stem Cells, 34(6), 1445–1454.
Creating tissues from textiles: Scalable nonwoven manufacturing techniques for fabrication of tissue engineering scaffolds
Tuin, S. A., Pourdeyhimi, B., & Loboa, E. G. (2016), Biomedical Materials, 11(1). https://doi.org/10.1088/1748-6041/11/1/015017
Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy of surgically resected glioblastoma
Bago, J. R., Pegna, G. J., Okolie, O., Mohiti-Asli, M., Loboa, E. G., & Hingtgen, S. D. (2016), Biomaterials, 90, 116–125.
Evaluation of silver ion-releasing scaffolds in a 3D coculture system of MRSA and human adipose-derived stem cells for their potential use in treatment or prevention of osteomyelitis
Mohiti-Asli, M., Molina, C., Diteepeng, T., Pourdeyhimi, B., & Loboa, E. G. (2016), Tissue Engineering. Part A, 22(21-22), 1258–1263. https://doi.org/10.1089/ten.tea.2016.0063
Fabrication of novel high surface area mushroom gilled fibers and their effects on human adipose derived stem cells under pulsatile fluid flow for tissue engineering. applications
Tuin, S. A., Pourdeyhimi, B., & Loboa, E. G. (2016), Acta Biomaterialia, 36, 220–230. https://doi.org/10.1016/j.actbio.2016.03.025
Facilitating teamwork in adolescent and young adult oncology
Johnson, R. H., Macpherson, C. F., Smith, A. W., Block, R. G., & Keyton, J. (2016), Journal of Oncology Practice, 12(11), 1067–. https://doi.org/10.1200/jop.2016.013870
Mechanical and vascular cues synergistically enhance osteogenesis in human mesenchymal stem cells
Steward, A. J., Cole, J. H., Ligler, F. S., & Loboa, E. G. (2016), Tissue Engineering. Part A, 22(15-16), 997–1005.
A novel ultrasound technique for non-invasive assessment of cell differentiation
Huang, W. B., Kim, J., Kim, K., Bakshi, S., Williams, J., Matthieu, P., … Jiang, X. N. (2016), IEEE Sensors Journal, 16(1), 61–68.
Continuous-wave stimulated emission depletion microscope for imaging actin cytoskeleton in fixed and live cells
Neupane, B., Jin, T., Mellor, L. F., Loboa, E. G., Ligler, F. S., & Wang, G. F. (2015), Sensors (Basel, Switzerland), 15(9), 24178–24190.
Extracellular calcium modulates chondrogenic and osteogenic differentiation of human adipose-derived stem cells: A novel approach for osteochondral tissue engineering using a single stem cell source
Mellor, L. F., Mohiti-Asli, M., Williams, J., Kannan, A., Dent, M. R., Guilak, F., & Loboa, E. G. (2015), Tissue Engineering. Part A, 21(17-18), 2323–2333.
Naturally derived and synthetic scaffolds for skeletal muscle reconstruction
Wolf, M. T., Dearth, C. L., Sonnenberg, S. B., Loboa, E. G., & Badylak, S. F. (2015), Advanced Drug Delivery Reviews, 84, 208–221.
Our fat future: Translating adipose stem cell therapy
Nordberg, R. C., & Loboa, E. G. (2015), Stem Cells Translational Medicine, 4(9), 974–979.
Translating textiles to tissue engineering: Creation and evaluation of microporous, biocompatible, degradable scaffolds using industry relevant manufacturing approaches and human adipose derived stem cells
Haslauer, C. M., Avery, M. R., Pourdeyhimi, B., & Loboa, E. G. (2015), Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 103(5), 1050–1058. https://doi.org/10.1002/jbm.b.33291
Age-related effects on the potency of human adipose-derived stem cells: Creation and evaluation of superlots and implications for musculoskeletal tissue engineering applications
Bodle, J. C., Teeter, S. D., Hluck, B. H., Hardin, J. W., Bernacki, S. H., & Loboa, E. G. (2014), Tissue Engineering. Part C, Methods, 20(12), 972–983.
Cyclic tensile strain enhances osteogenesis and angiogenesis in mesenchymal stem cells from osteoporotic donors
Charoenpanich, A., Wall, M. E., Tucker, C. J., Andrews, D. M. K., Lalush, D. S., Dirschl, D. R., & Loboa, E. G. (2014), Tissue Engineering. Part A, 20(1-2), 67–78.
Interconnected, microporous hollow fibers for tissue engineering: Commercially relevant, industry standard scale-up manufacturing
Tuin, S. A., Pourdeyhimi, B., & Loboa, E. G. (2014), Journal of Biomedical Materials Research. Part A, 102(9), 3311–3323. https://doi.org/10.1002/jbm.a.35002
Novel, silver-ion-releasing nanofibrous scaffolds exhibit excellent antibacterial efficacy without the use of silver nanoparticles
Mohiti-Asli, M., Pourdeyhimi, B., & Loboa, E. G. (2014), Acta Biomaterialia, 10(5), 2096–2104. https://doi.org/10.1016/j.actbio.2013.12.024
Primary cilium mechanotransduction of tensile strain in 3D culture: Finite element analyses of strain amplification caused by tensile strain applied to a primary cilium embedded in a collagen matrix
Mathieu, P. S., Bodle, J. C., & Loboa, E. G. (2014), Journal of Biomechanics, 47(9), 2211–2217.
Skin tissue engineering for the infected wound site: Biodegradable PLA nanofibers and a novel approach for silver ion release evaluated in a 3D coculture system of keratinocytes and Staphylococcus aureus
Mohiti-Asli, M., Pourdeyhimi, B., & Loboa, E. G. (2014), Tissue Engineering. Part C, Methods, 20(10), 790–797. https://doi.org/10.1089/ten.tec.2013.0458
Alternating current electric fields of varying frequencies: Effects on proliferation and differentiation of porcine neural progenitor cells
Lim, J. H., McCullen, S. D., Piedrahita, J. A., Loboa, E. G., & Olby, N. J. (2013), Cellular Reprogramming, 15(5), 405–412.
In vitro testicular toxicity models: Opportunities for advancement via biomedical engineering techniques
Saldutti, L. P., Beyer, B. K., Breslin, W., Brown, T. R., Chapin, R. E., Campion, S., … Yu, X. Z. (2013), Altex-Alternatives to Animal Experimentation, 30(3), 353–377.
Primary cilia: The chemical antenna regulating human adipose-derived stem cell osteogenesis
Bodle, J. C., Rubenstein, C. D., Phillips, M. E., Bernacki, S. H., Qi, J., Banes, A. J., & Loboa, E. G. (2013), PLoS One, 8(5).
Sensitization of transforming growth factor-beta signaling by multiple peptides patterned on DNA nanostructures
Pedersen, R. O., Loboa, E. G., & LaBean, T. H. (2013), Biomacromolecules, 14(12), 4157–4160.
The effects of cyclic hydrostatic pressure on chondrogenesis and viability of human adipose- and bone marrow-derived mesenchymal stem cells in three-dimensional agarose constructs
Puetzer, J., Williams, J., Gillies, A., Bernacki, S., & Loboa, E. G. (2013), Tissue Engineering. Part A, 19(1-2), 299–306.
Cytoskeletal and focal adhesion influences on mesenchymal stem cell shape, mechanical properties, and differentiation down osteogenic, adipogenic, and chondrogenic pathways
Mathieu, P. S., & Loboa, E. G. (2012), Tissue Engineering. Part B, Reviews, 18(6), 436–444.
Release profiles of tricalcium phosphate nanoparticles from Poly(L-lactic acid) electrospun scaffolds with single component, core-sheath, or porous fiber morphologies: Effects on hASC viability and osteogenic differentiation
Asli, M. M., Pourdeyhimi, B., & Loboa, E. G. (2012), Macromolecular Bioscience, 12(7), 893–900. https://doi.org/10.1002/mabi.201100470
Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity
Samberg, M., Loboa, E., Oldenburg, S., & Monteiro-Riviere, N. A. (2012), Nanomedicine, 7(8), 1197–1209.
Adipose-derived stem cells in functional bone tissue engineering: Lessons from bone mechanobiology
Bodle, J. C., Hanson, A. D., & Loboa, E. G. (2011), Tissue Engineering. Part B, Reviews, 17(3), 195–211.
Collagen-PCL sheath-core bicomponent electrospun scaffolds increase osteogenic differentiation and calcium accretion of human adipose-derived stem cells
Haslauer, C. M., Moghe, A. K., Osborne, J. A., Gupta, B. S., & Loboa, E. G. (2011), Journal of Biomaterials Science, Polymer Edition, 22(13), 1695–1712. https://doi.org/10.1163/092050610x521595
Dietary calcium restriction affects mesenchymal stem cell activity and bone development in neonatal pigs
Mahajan, A., Alexander, L. S., Seabolt, B. S., Catrambone, D. E., McClung, J. P., Odle, J., … Stahl, C. H. (2011), Journal of Nutrition, 141(3), 373–379. https://doi.org/10.3945/jn.110.131193
Laser ablation imparts controlled micro-scale pores in electrospun scaffolds for tissue engineering applications
McCullen, S. D., Gittard, S. D., Miller, P. R., Pourdeyhimi, B., Narayan, R. J., & Loboa, E. G. (2011), Annals of Biomedical Engineering, 39(12), 3021–3030. https://doi.org/10.1007/s10439-011-0378-2
Microarray analysis of human adipose-derived stem cells in three-dimensional collagen culture: Osteogenesis inhibits bone morphogenic protein and wnt signaling pathways, and cyclic tensile strain causes upregulation of proinflammatory cytokine regulators
Charoenpanich, A., Wall, M. E., Tucker, C. J., Andrews, D. M. K., Lalush, D. S., & Loboa, E. G. (2011), Tissue Engineering. Part A, 17(21-22), 2615–2627.
Application of low-frequency alternating current electric fields via interdigitated electrodes: Effects on cellular viability, cytoplasmic calcium, and osteogenic differentiation of human adipose-derived stem cells
McCullen, S. D., McQuilling, J. P., Grossfeld, R. M., Lubischer, J. L., Clarke, L. I., & Loboa, E. G. (2010), Tissue Engineering. Part C, Methods, 16(6), 1377–1386.
Effect of varied ionic calcium on human adipose-derived stem cell mineralization
McCullen, S. D., Zhan, J., Onorato, M. L., Bernacki, S. H., & Loboa, E. G. (2010), Tissue Engineering. Part A, 16(6), 1971–1981.
Fiber-reinforced scaffolds for tissue engineering and regenerative medicine: Use of traditional textile substrates to nanofibrous arrays
McCullen, S. D., Haslauer, C. M., & Loboa, E. G. (2010), Journal of Materials Chemistry, 20(40), 8776–8788.
In situ collagen polymerization of layered cell-seeded electrospun scaffolds for bone tissue engineering applications
McCullen, S. D., Miller, P. R., Gittard, S. D., Gorga, R. E., Pourdeyhimi, B., Narayan, R. J., & Loboa, E. G. (2010), Tissue Engineering. Part C, Methods, 16(5), 1095–1105. https://doi.org/10.1089/ten.tea.2009.0753
In situ monitoring of adipogenesis with human-adipose-derived stem cells using surface-enhanced raman spectroscopy
Moody, B., Haslauer, C. M., Kirk, E., Kannan, A., Loboa, E. G., & McCarty, G. S. (2010), Applied Spectroscopy, 64(11), 1227–1233. https://doi.org/10.1366/000370210793335106
Musculoskeletal mechanobiology: Interpretation by external force and engineered substratum
McCullen, S. D., Haslauer, C. M., & Loboa, E. G. (2010), Journal of Biomechanics, 43(1), 119–127. https://doi.org/10.1016/j.jbiomech.2009.09.017
The development and validation of a lipus system with preliminary observations of ultrasonic effects on human adult stem cells
Marvel, S., Okrasinski, S., Bernacki, S. H., Loboa, E., & Dayton, P. A. (2010), IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 57(9), 1977–1984.
Composite tissue engineering on polycaprolactone nanofiber scaffolds
Reed, C. R., Han, L., Andrady, A., Caballero, M., Jack, M. C., Collins, J. B., … Aalst, J. A. (2009), (Vol. 62, pp. 505–512).
Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells
McCullen, S. D., Zhu, Y., Bernacki, S. H., Narayan, R. J., Pourdeyhimi, B., Gorga, R. E., & Loboa, E. G. (2009), Biomedical Materials, 4(3). https://doi.org/10.1088/1748-6041/4/3/035002
Mesenchymal stem cell-seeded collagen matrices for bone repair: Effects of cyclic tensile strain, cell density, and media conditions on matrix contraction in vitro
Sumanasinghe, R. D., Osborne, J. A., & Loboa, E. G. (2009), Journal of Biomedical Materials Research. Part A, 88A(3), 778–786. https://doi.org/10.1002/jbm.a.31913
Osteogenic effects of rest inserted and continuous cyclic tensile strain on hASC lines with disparate osteodifferentiation capabilities
Hanson, A. D., Marvel, S. W., Bernacki, S. H., Banes, A. J., Aalst, J., & Loboa, E. G. (2009), Annals of Biomedical Engineering, 37(5), 955–965. https://doi.org/10.1007/s10439-009-9648-7
Cellular incorporation into electrospun nanofibers - Retained viability, proliferation, and function in fibroblasts
Van Aalst, J. A., Reed, C. R., Han, L., Andrady, T., Hromadka, M., Bernacki, S., … Loboa, E. G. (2008), Annals of Plastic Surgery, 60(5), 577–583. https://doi.org/10.1097/SAP.0b013e318168db3e
Cyclic tensile strain increases interactions between human epidermal keratinocytes and quantum dot nanoparticles
Rouse, J. G., Haslauer, C. M., Loboa, E. G., & Monteiro-Riviere, N. A. (2008), Toxicology in Vitro, 22(2), 491–497. https://doi.org/10.1016/j.tiv.2007.10.010
Expression of proinflammatory cytokines by human mesenchymal stem cells under cyclic tensile strain
Sumanasinghe, R. D., Pfeiler, T. W., Monteiro-Riviere, N. A., & Loboa, E. G. (2008), Journal of Cellular Physiology, 219(1), 77–83. https://doi.org/10.1002/jcp.21653
Finite element modeling of 3D human mesenchymal stem cell-seeded collagen matrices exposed to tensile strain
Pfeiler, T. W., Sumanasinghe, R. D., & Loboa, E. G. (2008), Journal of Biomechanics, 41(10), 2289–2296. https://doi.org/10.1016/j.jbiomech.2008.04.007
Isolation of human mesenchymal stem cells from bone and adipose tissue
Bernacki, S. H., Wall, M. E., & Loboa, E. G. (2008), Methods in Cell Biology, 86, 257–278.
Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells
McCullen, S. D., Stevens, D. R., Roberts, W. A., Clarke, L. I., Bernacki, S. H., Gorga, R. E., & Loboa, E. G. (2007), International Journal of Nanomedicine, 2(2), 253–263.
Differential effects on messenger ribonucleic acid expression by bone marrow-derived human mesenchymal stem cells seeded in agarose constructs due to ramped and steady applications of cyclic hydrostatic pressure
Finger, A. R., Sargent, C. Y., Dulaney, K. O., Bernacki, S. H., & Loboa, E. G. (2007), Tissue Engineering, 13(6), 1151–1158. https://doi.org/10.1089/ten.2006.0290
Effects of oxygen plasma treatment on adipose-derived human mesenchymal stem cell adherence to poly(L-lactic acid) scaffolds
Hanson, A. D., Wall, M. E., Pourdeyhimi, B., & Loboa, E. G. (2007), Journal of Biomaterials Science, Polymer Edition, 18(11), 1387–1400. https://doi.org/10.1163/156856207782246812
Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells
Wall, M. E., Bernacki, S. H., & Loboa, E. G. (2007), Tissue Engineering, 13(6), 1291–1298. https://doi.org/10.1089/ten.2006.0275
Genetic background influences fluoride's effects on osteoclastogenesis
Yan, D., Gurumurth, A., Wright, M., Pfeiler, T. W., Loboa, E. G., & Everett, E. T. (2007). Genetic background influences fluoride’s effects on osteoclastogenesis. Bone, 41(6), 1036–1044. https://doi.org/10.1016/j.bone.2007.07.018,
Human adipose-derived adult stem cells upregulate palladin during osteogenesis and in response to cyclic tensile strain
Wall, M. E., Rachlin, A., Otey, C. A., & Loboa, E. G. (2007), American Journal of Physiology. Cell Physiology, 293(5), C1532–1538. https://doi.org/10.1152/ajpcell.00065.2007
Semiautomated finite element mesh generation methods for a long bone
Pfeiler, T. W., Lalush, D. S., & Loboa, E. G. (2007), Computer Methods and Programs in Biomedicine, 85(3), 196–202. https://doi.org/10.1016/j.cmpb.2006.10.009
Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: Effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression
Sumanasinghe, R. D., Bernacki, S. H., & Loboa, E. G. (2006), Tissue Engineering, 12(12), 3459–3465. https://doi.org/10.1089/ten.2006.12.3459
Mechanobiology of mandibular distraction osteogenesis: finite element analyses with a rat model
Loboa, E. G., Fang, T. D., Parker, D. W., Warren, S. M., Fong, K. D., Longaker, M. T., & Carter, D. R. (2005), Journal of Orthopaedic Research, 23(3), 663–670. https://doi.org/10.1016/j.orthres.2004.09.010
Mechanobiology of mandibular distraction osteogenesis: experimental analyses with a rat model
Loboa, E. G., Fang, T. D., Warren, S. M., Lindsey, D. P., Fong, K. D., Longaker, M. T., & Carter, D. R. (2004), Bone, 34(2), 336–343. https://doi.org/10.1016/j.bone.2003.10.012

View all publications via NC State Libraries

View publications on Google Scholar

Grants

Development of a Functional Osteochondral Replacement Graft: 3-d Tissue Engineering and Biomimetic Stem Cell Guidance
Orthopaedic Research and Education Foundation(7/01/15 - 6/30/18)
Integrin Function in Cartilage
National Institutes of Health (NIH)(3/17/15 - 3/16/16)
Crosstalk Between Subchondral Bone and Articular Cartilage in Reduced Gravity May Contribute to Catastrophic Joint Damage
National Aeronautics & Space Administration (NASA)(12/01/14 - 11/30/15)
Induction of Early Stages of Osteoarthritis after Exposure to Microgravity
National Space Biomedical Research Institute (NSBRI)(6/01/13 - 2/28/15)
Human Adipose-Derived Stem Cells for Nonunion Bone Regeneration
Orthopaedic Trauma Association (OTA)(1/01/13 - 12/31/13)
Development and Translation of Controlled Release "Smart Bandages" for Antimicrobial, Antibacterial, and Anti-Inflammatory Wound Healing Applications
NC Biotechnology Center(9/01/13 - 8/31/15)
IDR: Primary Cilia as Sensors of Electric Field During Electrical Stimulation Induced hASC Osteogenesis
National Science Foundation (NSF)(1/01/12 - 12/31/16)
The National Textile Center: Electrospun Core-Sheath Fibers For Soft Tissue Engineering (F05-NS04)
NCSU National Textile Center Program(4/01/08 - 3/31/09)
Tensile Strain-Induced Osteogenesis of Human Mesenchymal Stem Cells in 3D Culture
National Institutes of Health (NIH)(12/01/09 - 1/31/13)
The Role of Palladin in the Mechanobiology of Human Mesenchymal Stem Cells
NC Biotechnology Center(6/01/07 - 5/31/10)