Douglas Irving


Alumni Distinguished Undergraduate Professor and University Faculty Scholar
  • 919-515-6154
  • Engineering Building I (EB1) 3028A

The overarching goal of Irving’s research is to strongly couple theoretical predictions with experiment such that these predictions ultimately become part of an integrated materials design framework. To this end, his research group develops computational models and approaches that aid in the design of materials for technologically important applications. Current projects include determination of the properties of point defects in wide and ultrawide bandgap materials from density functional theory, development of first principles informed multiscale models used to study electrical conductivity in polycrystalline ceramics and properties of electronic devices, prediction of electrical and optical properties resulting from defect equilibria important to modern devices and quantum information applications, and determination of properties (mechanical and chemical) of multi-principle component and high entropy metallic alloys. All electro-optical projects have leveraged the point defects informatics framework developed by Irving and his group and this structured information is being utilized with artificial intelligence (AI) and machine learning (ML) approaches to accelerate the realization of desired properties through close collaboration with experimental groups.


Ph.D. 2004

Materials Science and Engineering

University of Florida

M.S. 2002

Materials Science and Engineering

University of Florida

B.S. 1997


Furman University