Lew Reynolds

Teaching Professor

  • 919-515-7622
  • Engineering Building I (EB1) 3002C

Lew Reynolds was a Distinguished Member of Technical Staff at Bell Laboratories for 23 years prior to coming to NCSU in 2003. He has 30 years experience in the growth, characterization, and device development of III-V compound semiconductors. He has investigated extensively the influence of doping profiles on laser characteristics, developed MOVPE growth techniques for growth on gratings and along mesa sidewalls to minimize defects, and collaborated on the design of high speed photonic devices. More recent efforts have focused on mobility modulation in AlGaN HFET structures, strain relaxation in InGaAs solar cell structures, characterization of GaAsSb nanowires for mid-IR applications, and the pulse width dependence of optical gain in conjugated polymers.

He has been issued eight U.S. patents. His current research interests are compound semiconductor materials and devices, electrical and optical properties, thin film epitaxial growth of group III-nitrides and group II-oxides, heteroepitaxy, strain relaxation in misfit systems, defects and interfaces, quantum well structures, electronic and photonic devices, optical properties of conjugated polymers, and nanostructured materials. Currently teach two undergraduate laboratory courses and a graduate one on nanoelectronics. Faculty contact responsible for use of MSE lab service center equipment, for example, SEM, X-ray diffractometer, SQUID VSM, and PPMS.

Education

Ph.D. 1974

Materials Science

University of Virginia

M.S. 1972

Materials Science

University of Virginia

B.S. 1970

Physics

Virginia Military Institute

Research Description

Dr. Reynolds' interests include compound semiconductor materials and devices, epitaxial thin film growth, heteroepitaxy, strain relaxation in misfit systems, defects and interfaces, nanoscale materials, and optical properties of conjugated polymers.

Publications

Bandgap tuning in GaAs1-xSbx axial nanowires grown by Ga-assisted molecular beam epitaxy
Ahmad, E., Ojha, S. K., Kasanaboina, P. K., Reynolds, C. L., Liu, Y., & Iyer, S. (2017), Semiconductor Science and Technology, 32(3).
Growth of defect-free GaAsSbN axial nanowires via self-catalyzed molecular beam epitaxy
Sharma, M., Deshmukh, P., Kasanaboina, P., Reynolds, C. L., Liu, Y., & Iyer, S. (2017), Semiconductor Science and Technology, 32(12).
Intrinsic gain and gain degradation modulated by excitation pulse width in a semiconducting conjugated polymer
Lampert, Z. E., Papanikolas, J. M., Lappi, S. E., & Reynolds, C. L. (2017), Optics and Laser Technology, 94, 77–85. https://doi.org/10.1016/j.optlastec.2017.03.019
A two-step growth pathway for high Sb incorporation in GaAsSb nanowires in the telecommunication wavelength range
Ahmad, E., Karim, M. R., Bin Hafiz, S., Reynolds, C. L., Liu, Y., & Iyer, S. (2017), Scientific Reports, 7.
Effect of growth parameters and substrate surface preparation for high-density vertical GaAs/GaAsSb core-shell nanowires on silicon with photoluminescence emission at 1.3 mu m
Kasanaboina, P. K., Ojha, S. K., Sami, S. U., Reynolds, C. L., Liu, Y., & Iyer, S. (2016), Journal of Electronic Materials, 45(4), 2108–2114.
Effects of annealing on GaAs/GaAsSbN/GaAs core-multi-shell nanowires
Kasanaboina, P., Sharma, M., Deshmukh, P., Reynolds, C. L., Liu, Y., & Iyer, S. (2016), Nanoscale Research Letters, 11.
Incorporation of Be dopant in GaAs core and core-shell nanowires by molecular beam epitaxy
Ojha, S. K., Kasanaboina, P. K., Reynolds, C. L., Rawdanowicz, T. A., Liu, Y., White, R. M., & Iyer, S. (2016), Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures, 34(2).
Te incorporation in GaAs1-xSbx nanowires and p-i-n axial structure
Ahmad, E., Kasanaboina, P. K., Karim, M. R., Sharma, M., Reynolds, C. L., Liu, Y., & Iyer, S. (2016), Semiconductor Science and Technology, 31(12).
Bandgap tuning of GaAs/GaAsSb core-shell nanowires grown by molecular beam epitaxy
Kasanaboina, P. K., Ojha, S. K., Sami, S. U., Reynolds, C. L., Liu, Y., & Iyer, S. (2015), Semiconductor Science and Technology, 30(10).
Comparison of the stability of functionalized GaN and GaP
Wilkins, S. J., Paskova, T., Reynolds, C. L., & Ivanisevic, A. (2015), Chemphyschem, 16(8), 1687–1694.
Optimization of InGaP metamorphic buffers grown by MOVPE
, (2015). Journal of Crystal Growth, 414, 21–26.
Self-catalyzed growth of dilute nitride GaAs/GaAsSbN/GaAs core-shell nanowires by molecular beam epitaxy
Kasanaboina, P. K., Ahmad, E., Li, J., Reynolds, C. L., Liu, Y., & Iyer, S. (2015), Applied Physics Letters, 107(10).
Modification of properties of yttria stabilized zirconia epitaxial thin films by excimer laser annealing
Bayati, R., Molaeil, R., Richmond, A., Nori, S., Wu, F., Kumar, D., … Reynolds, C. L. (2014), ACS Applied Materials & Interfaces, 6(24), 22316–22325.
Progress in ZnO acceptor doping: What is the best strategy?
Reynolds, J. G., & Reynolds, C. L. (2014), Advances in Condensed Matter Physics.
Dislocations as quantum wires: Buffer leakage in AlGaN/GaN heterostructures
Reynolds, C. L., Reynolds, J. G., Crespo, A., Gillespie, J. K., Chabak, K. D., & Davis, R. F. (2013), Journal of Materials Research, 28(13), 1687–1691.
Enhancement of Optical Gain and Amplified Spontaneous Emission due to waveguide geometry in the conjugated polymer MEH-PPV
Lampert, Z. E., Papanikolas, J. M., & Reynolds, C. L. (2013), Applied Physics Letters, 102.
Enhancement of optical gain and amplified spontaneous emission due to waveguide geometry in the conjugated polymer poly[2-methoxy-5-(2 '-ethylhexyloxy)-p-phenylene vinylene]
Lampert, Z. E., Papanikolas, J. M., & Reynolds, C. L. (2013). Enhancement of optical gain and amplified spontaneous emission due to waveguide geometry in the conjugated polymer poly[2-methoxy-5-(2 ’-ethylhexyloxy)-p-phenylene vinylene]. Applied Physics Letters, 102(7),
Intrinsic optical gain in thin films of a conjugated polymer under picosecond excitation
Lampert, Z. E., Lappi, S. E., Papanikolas, J. M., & Reynolds, C. L. (2013), Applied Physics Letters, 103(3).
Morphology and chain aggregation dependence of optical gain in thermally annealed films of the conjugated polymer poly[2-methoxy-5-(2 '-ethylhexyloxy)-p-phenylene vinylene]
Lampert, Z. E., Lappi, S. E., Papanikolas, J. M., Reynolds, C. L., & Aboelfotoh, M. O. (2013). Morphology and chain aggregation dependence of optical gain in thermally annealed films of the conjugated polymer poly[2-methoxy-5-(2 ’-ethylhexyloxy)-p-phenylene vinylene]. Journal of Applied Physics, 113(23),
Shallow acceptor complexes in p-type ZnO
Reynolds, J. G., Reynolds, C. L., Mohanta, A., Muth, J. F., Rowe, J. E., Everitt, H. O., & Aspnes, D. E. (2013), Applied Physics Letters, 102(15).
Controlling morphology and chain aggregation in semiconducting conjugated polymers: The role of solvent on optical gain in MEH-PPV
Lampert, Z. E., Reynolds, C. L., Papanikolas, J. M., & Aboelfotoh, M. O. (2012), Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces & Biophysical, 116(42), 12835–12841.
Characterization of freestanding semi-insulating Fe-doped GaN by photoluminescence and electromodulation spectroscopy
Dumcenco, D. O., Levcenco, S., Huang, Y. S., Reynolds, C. L., Reynolds, J. G., Tiong, K. K., … Evans, K. R. (2011), Journal of Applied Physics, 109(12).
Study of molecular beam epitaxially grown InGaAsSbN/GaSb single quantum wells
Bharatan, S., Iyer, S., Li, J., Rawdanowicz, T. A., & Reynolds, L. (2011), Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures, 29(3).
Optimization of homoepitaxially grown AlGaN/GaN heterostructures
Grenko, J. A., Ebert, C. W., Reynolds, C. L., Duscher, G. J., Barlage, D. W., Johnson, M. A. L., … Evans, K. R. (2010), Physica Status Solidi. A, Applications and Materials Science, 207(10), 2292–2299.
Crystallographic plane dependent Fe and Si dopant incorporation and activation in InP
Reynolds, C. L., & Grenko, J. A. (2009), Physica Status Solidi. A, Applications and Materials Science (Online), 206(4), 691–696.
On the origin of aluminum-related cathodoluminescence emissions from sublimation grown 4H-SiC(11(2)over-bar0)
Bishop, S. M., Reynolds, C. L., Molstad, J. C., Stevie, F. A., Barnhardt, D. E., & Davis, R. F. (2009), Applied Surface Science, 255(13-14), 6535–6539. https://doi.org/10.1016/j.apsusc.2009.02.036
Relationship between 4H-SiC/SiO2 transition layer thickness and mobility
Biggerstaff, T. L., Reynolds, C. L., Zheleva, T., Lelis, A., Habersat, D., Haney, S., … Duscher, G. (2009), Applied Physics Letters, 95(3).
Self-assembled three-dimensional Cu-Ge nanoweb composite
Darling, K. A., Reynolds, C. L., Leonard, D. N., Duscher, G., Scattergood, R. O., & Koch, C. C. (2008), Nanotechnology, 19(13).
Sublimation growth of an in-situ-deposited layer in SiC chemical vapor deposition on 4H-SiC(1 1 (2)over-bar 0)
Bishop, S. M., Reynolds, C. L., Liliental-Weber, Z., Uprety, Y., Ebert, C. W., Stevie, F. A., … Davis, R. F. (2008), Journal of Crystal Growth, 311(1), 72–78. https://doi.org/10.1016/j.jcrysgro.2008.09.200
Thermal stability, mechanical and electrical properties of nanocrystalline Cu3Ge
Darling, K. A., Guduru, R. K., Reynolds, C. L., Bhosle, V. M., Chan, R. N., Scattergood, R. O., … Aboelfotoh, M. O. (2008), Intermetallics, 16(3), 378–383. https://doi.org/10.1016/j.intermet.2007.11.005
Tunneling entity in different injection regimes of InGaN light emitting diodes
Reynolds, C. L., & Patel, A. (2008), Journal of Applied Physics, 103(8).
Polytype stability and microstructural characterization of silicon carbide epitaxial films grown on [11(2)over bar0]- and [0001]-oriented silicon carbide substrates
Bishop, S. M., Reynolds, C. L., Liliental-Weber, Z., Uprety, Y., Zhu, J., Wang, D., … Davis, R. F. (2007), Journal of Electronic Materials, 36(4), 285–296.
Influence of Zn doping profiles on excitation dependence of photoluminescence intensity in InGaAsP heterostructures
Young, D. K., Reynolds, C. L., Swarninathan, V., & Walters, F. S. (2005), Electronics Letters, 41(18), 1008–1010. https://doi.org/10.1049/el:20052347
Improved contact resistance and linearity in optoelectronic devices with an intermediate quaternary layer
Przybylek, G. J., Reynolds, C. L., & Walters, F. S. (2004), Journal of Applied Physics, 96(10), 5788–5791. https://doi.org/10.1063/1.1801160
Nanoscale GaN whiskers fabricated by photoelectrochemical etching
Grenko, J. A., Reynolds, C. L., Schlesser, R., Hren, J. J., Bachmann, K., Sitar, Z., & Kotula, P. G. (2004), Journal of Applied Physics, 96(9), 5185–5188. https://doi.org/10.1063/1.1788841
Selective etching of GaN from AlGaN/GaN and AlN/GaN structures
Grenko, J. A., Reynolds, C. L., Schlesser, R., Bachmann, K., Rietmeier, Z., Davis, R. F., & Sitar, Z. (2004), MRS Internet Journal of Nitride Semiconductor Research, 9(5).

View all publications via NC State Libraries

Grants

Excellence in Research: “GaAsSb/GaAs Nanowire Based Avalanche Photodetectors on Si”
National Science Foundation (NSF)(9/15/18 - 8/31/21)
Dilute Nitride GaAsSbN/GaAs Nanowires for Infrared Photodectors
US Navy-Office Of Naval Research(6/01/16 - 5/31/19)
Identification/Quantification of Low Level Recombination Centers in Silicon
NCSU Silicon Solar Consortium (SiSoC) Research Center(12/01/14 - 12/31/16)
A Study of GaAsSb Nanowires for Photodetectors
US Army - Army Research Office(4/27/15 - 10/26/18)
Interfacial Induced Properties in GaN Devices
National Science Foundation (NSF)(9/01/13 - 8/31/18)
Proposal for Phase II of the SiSoC NSF I/UCRC: Enhancing the Manufacturability of Silicon Solar Cells
National Science Foundation (NSF)(10/01/13 - 9/30/18)
A study of GaAsSb Nanowires by Molecular Beam Epitaxy for Near IR Applications
US Army - Army Research Office(6/15/11 - 6/14/15)
SiSoC Associate Membership - MEMC
SunEdison, Inc. formerly MEMC Electronic Materials Co.(1/01/08 - 12/31/15)